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Evidence of phase transitions in heart period dynamics
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Abstract. Complexity measures of non-linear dynamics are
a useful tool for quantifying observed stretching, folding,
scaling and mixing processes in the Takens-reconstructed
state space of heart period dynamics. Although such mea-
sures are not suited to provide evidence of deterministic
chaos or to estimate true fractal dimensions and Lyapunov
spectra in heart period time series, they allow the classifi-
cation of RR dynamics and the identification of changes in
RR complexity (RRC). The aim of this study was to develop
appropriate measures and examine their utility in identify-
ing the physiological effect of changes between the sleep-
ing and waking state. Twenty-four hour electrocardiography
(ECG) recordings and diaries noting their waking/sleeping
period were obtained from 78 healthy subjects, aged 20 to 55
years. The approximate information dimension (ApD1) and
the approximate Kolmogorov entropy (ApEn), introduced
by Pincus, Kaplan and others, were modified in order to al-
low the calculation of strictly local values. That is, the local
or pointwise dimensions and entropies were calculated for
each reference vector with respect to its symmetric neigh-
bourhood in time. For each subject the values for the local
measures were averaged for 10-min periods, resulting in 144
global values over 24 h. Similarly, low- and high-frequency
spectral parameters were calculated. All measures were ex-
amined and compared for the waking and the sleeping pe-
riods. All complexity measures as well as to a lesser de-
gree high-frequency power showed a linear dependency on
mean RR interval with a large individual variation. For the
RRC measures this linear correlation was separated into two
different clusters corresponding to the sleeping and waking
periods. In almost all cases the correlation was greater in the
waking period. In particular, in many cases no correlation
was observed in the sleeping period. However, ther values
for LF were appreciably lower and indicated solely a weak
relationship to the RR interval in the waking period. Anal-
ysis of variance combining mean RR interval with RRC or
spectral parameters singly and in couples revealed that the
best separation with respect to physiological state could be
achieved with the complexity measures, in particular with
ApEn. The results show evidence of at least two dynami-
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cal regimes (phases) of heart period dynamics and a close
but different functional relationship within the phases be-
tween RR interval and RR complexity. The separation be-
tween these regimes and the relatively sudden shift from one
regime to the other suggest the existence of a phase transi-
tion with respect to waking and sleeping periods in terms of
synergetics.

1 Introduction

Measures from non-linear dynamic system theory to time
series data have been applied to the investigation of heart
rhythms and initial studies in the mid-1980s (Babloyantz
1988) were among the first physiological applications of
chaos theory. With the initial enthusiasm, these novel an-
alytic tools were envisioned as opening up possibilities for
new diagnostic and prognostic procedures. Ten years on, we
are still far from this goal.

Cardiac regulation is revealed most obviously in the se-
quence of heart beat periods. A beat period is generally
defined as the time duration between successive R waves
in the electrocardiogram (ECG) and referred to as the RR
interval. In modern ECG data acquisition and analysis sys-
tems, subtle methods have been developed to detect the QRS
complex with high precision. The series of RR intervals thus
produced is called the RR tachogram. It is the raw material
for the RR complexity (RRC) analysis, which is performed
in the reconstructed state space of the RR dynamics. This is
in contrast to the clinically applied methods of RR variabil-
ity analysis, which apply classic time series analysis in the
time and frequency domain (for an overview, see Malik et
al. 1996).

Measures derived from the theory of non-linear dynamics
quantify the processes of expansion, contraction and folding
which, according to the principle of the baker transforma-
tion, lead to a mixing in state space and produce fractal
structures. Expansion and contraction are measured by Lya-
punov exponents, whereas the scaling properties of the frac-
tal which ensues in state space after prolonged observation of
the dynamic system are quantified by dimension measures.
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All dimension measures can be ordered in a sequence of
generalized dimensions (Hentschel and Procaccia 1983), of
which the fractal (or similarity) dimension, the information
dimension as well as the correlation dimension are usually
calculated.

In the 1980s the application of non-linear dynamic analy-
sis to ECG time series focussed primarily either on attempts
to demonstrate the existence of a deterministic generator of
cardiac rhythms or on comparisons between experimental
and model data. In contrast, the work at the onset of the
following decade became more pragmatic and oriented to-
ward clinical use (for comprehensive literature, see Better-
mann 1996). Kaplan and co-workers (1990, 1991) created
the concept of approximate complexity by doing without the
unrealistically high number of samples required by theory as
well as by avoiding the assumption of strict self-similarity
which is rarely found in nature. These authors prefer a more
probabilistic approach in their methods and explicitly take
the dependency of complexity measures on the data structure
(number of data points, resolution, noise) into consideration.
In 1990 they introduced a number of complexity measures
for the analysis of heart periods and blood pressure and gave
recommendations for the parameter settings for their approx-
imative procedures. More recently, Pincus and co-workers
(Pincus 1991, 1994, 1995; Pincus et al. 1991; Pincus and
Viscarello 1992) have advocated the use of approximate en-
tropy (ApEn) which they described as a ‘regularity statistic’,
thereby emphasizing that it represents a statistical measure
for the regularity or order in a time series.ApEn has been
systematically applied in clinical studies: it has been used
to calculate heart rate complexity in postoperative ventricu-
lar dysfunction (Fleisher et al. 1993), prior to sudden infant
death (Pincus et al. 1993), and in fetal heart period analy-
sis (Pincus and Viscarello 1992; Van Leeuwen et al. 1996).
In non-cardiac applications, changes in hormone levels have
been investigated (Pincus and Keefe 1992). It was also com-
pared with power spectral indices (Sapoznikov et al. 1995).

Similarly to Kaplan, Pincus and others, in our previous
work we approximated the correlation dimension (apparent
dimensionDA) globally for fixed data windows (Better-
mann and Van Leeuwen 1992; Van Leeuwen et al. 1995).
The calculation ofDA places particular emphasis on the as-
sumption of stationarity. As stationarity is rarely met in RR
tachograms, this method of dimension calculation is more or
less arbitrary: depending on the position in the data window,
a data point will be related in varying degrees to the past or
the future. Thus the closer an RR interval is to the begin-
ning of a data window, the more predominantly it will be
correlated with future RR intervals and the less its relation-
ship to the past is taken into consideration. This problem is
avoided by the use of local complexity measures. The point-
wise or local approximation of complexity was introduced
by Mayer-Kress, who has consistently applied the pointwise
dimension (Mayer-Kress 1994). He emphasizes that the vari-
ance of this measure, which reflects the inhomogeneity of
the dynamics, has high explanatory power. In pointwise mea-
sures, the local RRC is calculated for each RR interval in a
symmetric neighbourhood of RR intervals in state space. The
local approximation has the advantage that the course of the
local complexity can be represented beat to beat, continually
over long periods of time in the 24-h ECG, whereby each

beat is considered in like manner. Furthermore, global com-
plexity measures can be formed by averaging according to
need. A comprehensive theoretical basis dealing with local
and global complexity of invariant measures can be found
in the publication of Grassberger and co-workers (1988).

In previous work we were able to show that, in a ma-
jority of subjects, the apparent dimensionDA was signifi-
cantly higher for nighttime values (Van Leeuwen et al. 1995).
As there was also a concomitant increase in heart period at
night, the question remains as to what degree the observed
differences in day and nighttimeDA values were a result of
changes in heart rate. It is not clear whether different values
of DA, as a global measure, represent physiological changes
or whether this is due to a systematic bias resulting from lim-
itations in the temporal resolution of RR intervals. A further
interesting question from the point of view of synergetics is:
do the day-night differences in RRC result solely from a lin-
ear correlation betweenDA and RR interval or does a phase
transition exist between the RR dynamics of the sleeping
and waking states?

In an attempt to answer these questions, we turned to the
methods of Pincus, Kaplan and others and approximated the
information dimension (ApD1) and the Kolmogorov entropy
(ApEn). Both are global complexity measures and charac-
terize the scaling (static) properties of the distribution in state
space as well as the expansion behaviour (dynamic proper-
ties) of the generating dynamics. However, in contrast to the
original definitions, we use a strictly local approach for the
approximation of these global measures. By strictly local,
we mean the computation of a local or pointwise dimen-
sion and entropy for each reference vector with respect to
its symmetric neighbourhood in time. These local measures
are then averaged to global measures over 10-min periods.

2 Methods

2.1 RR complexity analysis

Non-linear time series analysis in state space is based on
Takens’ theorems which guarantee a topological equivalence
between original state space and the reconstructed state space
by using time delay coordinates. Without loss of generaliza-
tion, we interpret the RR tachogram as a ‘time’ series with
a one beat delay. Thus,k successive RR intervals form a
vector in the reconstructed state space indexed by the beat
number of the leading RR interval:

~RRi =
(
RRi, RRi+1, . . . , RRi+k−1

)
∈ reconstructed state space (1)

A data window with lengthN (RR intervals), which pro-
videsN − k + 1 k-dimensional reconstructable vectors, was
continuously moved over the whole RR tachogram. Thek
data values in the centre of the window form the reference
vector (see Fig. 1).

In our approach the quantification of local scaling prop-
erties starts with the calculation of the local correlation in-
tegralsCk

i (l) for each data window.Ck
i (l) is defined as the

relative number of embedded data vectors~RRj from the
data window within al-sphere around the reference vector
~RRi as a function of the distancel:
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Fig. 1. Moving data window for the local complexity approximation.Ri,
ith R wave (reference beat);RRi, ith RR interval; ~RRi, ith k-dimensional
RR pattern (reference vector,k = 3)

Ck
i (l) =

1
N − k + 1

{number of vectors~RRj with | ~RRi − ~RRj | < l} (2)

j ∈ [i− int
(
N/2

)
+ 1, i + int

(
N/2

)− k + 1]

Next, define

Φk (NRef, l)=N
−1
Ref

NRef∑
i=1

logCk
i (l)

=N−1
Ref

NRef∑
i=1

Φki (l) (3)

and the approximate entropy (Pincus 1994)

ApEn (NRef, k, l) = Φk−1 (NRef, l) − Φk (NRef, l) (4)

ApEn could be interpreted as ‘the negative logarithmic like-
lihood that runs of patterns that are close fork − 1 obser-
vations remain close on next incremental comparison with
tolerancel’ (Pincus 1994). In our caseApEn could also
be interpreted as an average overNRef local or pointwise
approximate entropies (ApPE):

ApEn (NRef, k, l) = N−1
Ref

NRef∑
i=1

(
Φk−1
i (l) − Φki (l)

)
= N−1

Ref

NRef∑
i=1

ApPE (k, l, i) (5)

The local approximate dimension may be defined as the
mean slope of the local correlation dimension between the
two length scale valuesla and lb:

ApPD (k, i) =
Φki (la) − Φki (lb)

log la − log lb
(6)

la and lb are chosen separately for each local approxima-
tion such that log10C

k
i (la) = L and log10C

k
i (lb) = U . By

visual inspection of a large number of randomly selected lo-
cal correlation integrals,L andU are fixed such that they
represent as best as possible the lower and the upper bounds
of the linear scaling range in the double logarithmic plots:
logCk

i (log l). In our case, linear scaling is not a necessary
condition for approximation of the dimension, but should be
taken into account if present. The approximate information
dimension is then defined as the mean of the local approxi-
mate dimensions:

ApD1(NRef, k) = N−1
Ref

NRef∑
i=1

ApPD (k, i) (7)

2.2 Parameter settings

In accordance with recommendations made in the literature
(Kaplan et al. 1990) and our analysis of previous data (Van
Leeuwen et al. 1995), we chose a three-dimensional em-
bedding (k = 3). The data window encompassed 1000 RR
intervals (N = 1000). The local complexity measures were
averaged for the reference beats within 10-min intervals. As
a resultNRef was variable.ApEn was calculated for a toler-
ance radius of 20 ms (l = lt = 20 ms), and the scaling range
for eachApPD was set toL = −2.0 andU = −0.5.

2.3 Subjects

Seventy-eight healthy clinic employees with no history of
cardiovascular or pulmonary disease served as subjects. Af-
ter examination of their 24-h ECGs, 6 subjects were ex-
cluded because of the presence of a high number of ectopic
beats or suspected autonomic neuropathy. The remaining 72
subjects (24 men) were aged between 20 and 55 years (mean
± SD 31± 9 years), and 33 were regular smokers. All sub-
jects kept a diary in which, in particular, the sleeping and
waking times were noted. This permitted a differentiation
of the data not only according to time of day but also with
respect to sleeping and waking periods.

2.4 ECG recording and ECG analysis

The 24-h ECGs were recorded with Oxford Medilog FD2
solid-state recorders with a maximum sampling rate of 1024-
Hz during the QRS complex. Computer-supported automatic
evaluation was performed with an Oxford Excel ECG anal-
yser using template analysis as follows. Beats are identified
using a correlation algorithm, classes of beats are created on
the basis of different wave forms (templates), and all identi-
fied beats are accordingly classified. Subsequently, medical
personnel examined the initial beats in each template group
to ensure proper classification. Artifacts marked as beats or
extrasystoles falsely identified as sinus rhythm beats were
reclassified. A data file containing beat type and time of day
for all beats of the 24-h ECG was then exported to a Pen-
tium 90 PC for the complexity analysis (ca. 2 h computing
time/24-h ECG).

2.5 Ectopic beat filter

The main purpose of the ectopic beat filter was to restrict the
reference vectors to those within normal physiological lim-
its and to avoid interpolating or extrapolating beats. In the
calculation of complexity measures, only the times between
templates which had been classified as normal were consid-
ered. Other intervals were marked with the value 9999 ms.
This served to place these vectors outside the area of the
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Fig. 2. RR tachogram of subject P10 from 1:30:08 to
2:09:08

reconstructed state space under consideration. As the scal-
ing properties were only examined in the neighbourhood of
the reference vectors (l < 200 ms), ectopic beats and ar-
tifacts are thus not considered in the calculation ofApEn
andApD1.

2.6 Data analysis

As previously described,ApEn andApD1 as well as mean
RR interval (mRR) were calculated for each 10-min inter-
val over the 24 h of acquired data. Furthermore, in order to
compare the results to commonly used heart rate variability
parameters in the frequency domain, spectral analysis using
fast Fourier transformation (FFT) was performed in each 10-
min interval. The resulting spectral power density function
was integrated in the low-frequency band (0.04–0.15 Hz, LF)
and the high-frequency band (0.15–0.40 Hz, HF). LF and HF
power (LF , HF ) were computed in milliseconds such that
they correspond to the standard deviation of theLF and
HF band-passed RR interval series. The spectral analysis
was performed according to the methods of Rottman and
co-workers (1990) and is described in detail elsewhere (Bet-
termann 1996).

The results were examined visually by plotting the com-
plexity measures as well as the spectral measures against
mean RR interval while distinguishing between values ob-
tained in the waking or the sleeping period. We refer to these
plots as complexity and variability state space diagrams, re-
spectively. The sleeping and the waking period were defined
according to the subjects’ reports in their diaries. As such,
they do not differentiate between varying waking states or
sleep stages but simply identify the basic physiological con-
dition of normal arousal and unconscious rest. In order to
avoid possible ambiguity resulting from the transition be-
tween states as well as inaccuracies in the subjects’ diary,
values obtained in a 20-min period before and after the re-
ported times were appropriately marked. The relationship
between mean RR interval and the complexity and spectral
measures was examined for both periods on the basis of
correlation coefficients (r).

It is well-known that the RR interval changes between
physiological states. We therefore attempted to quantify the
possible augmentation in information with respect to the sep-
aration of waking and sleeping periods provided by each of

the measures presented here. To this end, Wilk’s lambda (Λ)
was calculated as a measure of phase coincidence for differ-
ent projections in complexity and variability state space.Λ
is defined as follows:

Λ = det
(
T−1 · W

)
with

T = Xt
W+S ·XW+S (total scatter matrix) (8)

and

W = Xt
W · XW + Xt

S · XS (within groups scatter matrix)

Λ quantifies the relationship between the variance within
clusters and the total variance; XW represents the complex-
ity (or spectral) data matrix in the waking period, XS that of
the sleeping period, and XW+S is composed of the values of
all time intervals. Each line in the matrix is composed of the
complexity or variability values of a 10-min interval. Low
Λ values (near zero) indicate a separation of the parame-
ters examined, and conversely, highΛ values (near 1) imply
coincidence.Λ is used here as a descriptive and not as a
confirmative statistic. It must further be noted that the value
of Λ is dependent on the relative orientation of the clusters.
The more the angle between the clusters approaches 90◦,
the larger the value ofΛ. Nonetheless, small values ofΛ
indicate greater group separation.

3 Results

The following example serves to demonstrate the complexity
analysis. Three thousand heartbeats with a mean beat period
of 783 ms were obtained from subject P10 in the time be-
tween 1:30:08 to 2:09:08. The RR tachogram and the RR
state space portrait are shown in Figs. 2 and 3, respectively.
The local logarithmic correlation integrals (k = 3) in the
scaling range for the first 100 reference beats are shown in
Fig. 4. On the basis of the subject’s diary the RR interval,
ApEn, ApD1, LF andHF were averaged for the waking
and sleeping periods (667 ms and 818 ms, 0.42 and 0.52,
1.90 and 2.26, 26.6 ms and 26.5 ms, 14.7 ms and 20.3 ms,
respectively). These values are more or less representative
of the overall results.
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Fig. 3. RR state space portrait of the data in Fig. 2

Table 1.mRR, ApEn, ApD1, LF andHF during waking and sleeping
periods as well as the difference sleeping-waking (mean± SD over all
subjects)

Waking Sleeping Sleeping-waking

mRR (ms) 729±67 976±116 247±85
ApEn 0.44±0.07 0.52±0.08 0.08±0.09
ApD1 1.86±0.11 2.19±0.13 0.33±0.15
LF (ms) 35.0±9.7 40.0±15.2 5.0±10.5
HF (ms) 18.7±7.4 32.5±17.0 13.8±12.3

The mean results for all subjects showed that all five
measures were higher in the sleeping period, indicating an
overall decrease in heart rate, an increase in complexity of
heart period dynamics and an increase in heart rate variabil-
ity (see Table 1). Only 9 (13%)ApEn values, and 2 (3%)
ApD1 values were lower during sleep. For the frequency
domain, 24 (33%) of theLF values and 3 (4%) of theHF
values were lower during sleep.

In Fig. 5 the 10-min values forApEn andApD1 as well
as those for the spectral variables,LF andHF , are plotted
againstmRR separately for the sleeping and waking periods
for six selected subjects. These examples were chosen to
demonstrate the various separation patterns between the two
periods with respect to both the parameters and the subjects.

Examination of the relationship between mean RR inter-
val and RRC values confirmed the linear correlation previ-
ously observed. However, ther values differed between the
two periods, the strength of the relationship being greater
in the waking period (Table 2). In particular, in many cases
no correlation was observed in the sleeping period. Overall
similar results were obtained forHF . However, ther values
for LF were appreciably lower and indicated solely a weak
relationship tomRR in the waking period.

The varying degree of correlation between the two peri-
ods raises the question in what way the relationship between
the measures and RR interval differ between sleeping and

Table 2. r values forApEn, ApD1, LF andHF with respect tomRR
during waking and sleeping periods (mean± SD over all subjects)

Waking Sleeping

ApEn 0.79±0.21 0.37±0.44
ApD1 0.73±0.12 0.40±0.31
LF (ms) 0.37±0.27 0.11±0.32
HF (ms) 0.65±0.19 0.41±0.30

waking. Visual examination of the data shows that, for the
RRC values, the sleeping and waking data clusters are often
clearly disjunct and shifted along both axes relative to each
other; e.g. theApEn waking data for subject P10 (Fig. 5) are
displaced to the left and downwards from the sleeping data,
the division being so clear that a straight line can be drawn
to separate them completely. As the linear relationship does
not run parallel to either axis, a univariate projection onto
either axis results in an overlap of the sleeping and waking
data. Only the bivariate representation allows the isolation
of the two physiological states. In varying degrees, the same
is true for the other subjects who differ (a) in the orientation
of the clusters (see subjects P18 and P19), (b) in the strength
of the correlation within the clusters and (c) in the transition
values between the clusters. In some cases the clusters do
not correspond to the waking and sleeping period completely
(P04, P18). The clustering with respect to physiological pe-
riod is more pronounced withApEn, whereasApD1 shows
a more uniform linear correlation over the whole 24-h pe-
riod. An exception to this can be found in P06. Examination
of the spectral data reveals no similar form of clustering:
on the whole, the shift between sleeping and waking data
points, in particular for the LF band, can be seen as result-
ing from the change in RR interval. The higherr values for
the HF band can be understood as a mean increase in vagal
tone corresponding to the decrease in heart rate (Malik et al.
1996).

The observed clustering of the RRC values with respect
to physiological period, accompanied by functional relation-
ships in the respective clusters between mean RR interval
and the complexity measures, allows us to speak of com-
plexity phases and of phase transitions between waking and
sleeping. From a systems theory standpoint, it seems likely
that physiological systems go through a number of phases
during 24 h, each phase having its own dynamic regulation.

Analysis of variance showed that the single variable that
best explains the waking-sleeping clustering is the mean RR
interval with the lowestΛ value of 0.36 (Table 3). Com-
bining mRR with each of the other parameters lowersΛ
further, whereby the greatest increase in explanatory power
resulted from the addition ofApEn (Λ = 0.27). In the three-
dimensional combination, the additionApD1 results in only
a minimal further change inΛ. This combination is, how-
ever, much more efficient than linkingmRR with the fre-
quency domain parametersHF andLF .

4 Discussion

It is a well-known fact that changes in physiological state
are often accompanied by changes in heart rate. Heart rate
itself is mediated by various physical, chemical and neu-
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Fig. 4. Local logarithmic correlation integrals in the
scaling range for the first 100 reference beats shown in
Fig. 2

Table 3.Λ for mRR, ApEn, ApD1, LF andHF , singly and in two- and three-dimensional combinations (mean,
SD, minimum and maximum over all subjects)

mRR ApEn ApD1 LF HF mRR mRR mRR mRR mRR mRR
ApEn ApD1 LF HF ApEn LF

ApD1 HF

Mean 0.36 0.81 0.74 0.87 0.69 0.27 0.33 0.33 0.34 0.26 0.31
SD 0.15 0.17 0.15 0.14 0.23 0.14 0.15 0.13 0.14 0.13 0.12
Min 0.12 0.40 0.35 0.43 0.23 0.09 0.11 0.12 0.12 0.08 0.11
Max 0.69 1.00 1.00 1.00 1.00 0.62 0.68 0.63 0.66 0.59 0.62

ral processes that take place in different, linked organs and
organ systems. Thus, the description of the heart rate and
its higher order behaviour, i.e. heart rate variability, permits
the identification of the normal and pathological states of
the organism. In order to increase the accuracy of heart rate
parameters, a number of methods have been developed in
the time and frequency domain to examine the changes in
the variance as well as in the periodicity of the heart rate un-
der a variety of conditions. More recently, studies have been
undertaken to determine whether aperiodic but deterministic
time structures can be identified. Pragmatic concerns have
led to the development of parameters which permit a quan-
tification of temporal complexity. In this study we examined
whether such parameters of complexity do indeed augment
information on physiological state or whether they reflect a
simple correlation to the underlying heartbeat period.

The results show that the RRC measures examined here
are not a simple function of the RR interval. The fact that
the orientation and strength of the linear correlation between
RRC measures and mean RR interval are different in the
waking and sleeping periods under identical data acquisition
and data evaluation conditions indicates clearly that the cor-
relative interdependency is related to the physiological state.
The qualitative examination of the results for single subjects
on the basis of the figures strongly suggests evidence for
the existence of dynamic phases in heart period dynamics.
The change between regimes, which is often abrupt, may

be interpreted as phase transitions. The quantitative phase
characterization on the basis of the cluster analysis further
supports this interpretation. It also demonstrates the advan-
tage of the complexity analysis over clinically applied heart
rate variability analysis in the frequency domain. The differ-
ences in the patterns found in the complexity state space of
the RR dynamics reflect the interindividual range in circa-
dian rhythms and sleep-waking patterns (Cherepanova and
Putilov 1993).

The discovery of phase transitions in the RR dynam-
ics has important consequences. In the examination of 24-
h heart rate regulation, many investigators using harmonic
analysis concentrate on the search for continuous circadian
rhythms produced by a central circadian oscillator which
controls the dynamics in clock-like fashion. Phase transi-
tions and bifurcations indicated by complexity shifts between
sleeping and waking states cannot be explained as a prod-
uct of a linear central oscillator but may occur in non-linear
oscillating systems. In the latter, the internal zeitgeber of
the organism itself is a chaotic attractor which, under spe-
cial conditions, can also produce strictly harmonic circadian
patterns. Lloyd and Lloyd (1994) assume the presence of
high-dimensional chaotic dynamics which are controlled and
stabilized by feedback mechanisms. Such systems are able
to produce a wide spectrum of dynamic behaviour, whereby
harmonic circadian rhythms play only a subordinate role and
linear analyses can consequently represent only a small por-
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Fig. 5. Dependency ofApEn, ApD1, LF andHF
on mRR for six selected subjects:• waking values,
◦ sleeping values, ? transition values

tion of the controlling dynamics. For comprehensive inves-
tigation of such systems, non-linear analyses are required.

The phenomenon of complexity phase transitions has
been discussed previously by Y. Aizawa (1986) who refers
to them as chaos-chaos phase transitions. Such transitions
can produce a change of order in state space and can lead
to a large inhomogeneity of the attractors. They occur pref-
erentially in grown state chaotic systems and are seldom
observed in germinal chaotic systems (routes to chaos).
Aizawa also describes the possibility of identifying struc-
tural changes on the basis of fluctuations in local Lyapunov
exponents or local dimensions. He describes two kinds of
phase transitions: the fusion type, where several attractive

basins merge, and the entrainment type, which leads to the
dominance of certain internal modes.

Physical phase transitions, such as those between ther-
modynamic equilibria, are generally fast dynamic processes
with a high degree of unpredictability. In this context unpre-
dictability is the means to the end and not the goal of the
transition dynamics. One may image a wheel rolling down a
hill: it is quite certain that the wheel will arrive at the bottom
of the valley, but the route it takes can seldom be predicted.
Normal physiological systems may behave in a similar fash-
ion: the physiological landscape is rough but generally does
not contain an abyss which would lead the transitional dy-
namics to disaster. The transition from waking to sleeping
or vice versa is usually not dangerous. On the other hand,



70

pathology in heart rate regulation would then be character-
ized by a local rift in which the transition dynamics can,
but need not, be caught. The above is no doubt a simplifica-
tion, but it does give a synergetic explanation for phenomena
which may be observed during the process of falling asleep
or waking up.
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