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Abstract 

The human heartbeat series is more variable and, hence, more complex in healthy subjects than 
in congestive heart failure (CHF) patients. However, little is known about the complexity of the 
heart rate variations on a beat-to-beat basis. We present an analysis based on symbolic dynamics 
that focuses on the dynamic features of such beat-to-beat variations on a small time scale. The 
sequence of acceleration and deceleration of 8 successive heartbeats is represented by a binary 
sequence consisting of 1s and 0s. The regularity of such binary sequences is quantified using 
Approximate Entropy. Holter electrocardiograms from 30 healthy subjects, 15 patients with 
congestive heart failure (CHF) and their surrogate data were analyzed with respect to the 
regularity of such binary sequences. The results of this approach are compared to spectral 
analysis and Approximate Entropy of heart rate variability. Counter-intuitively, healthy subjects 
show a large amount of regular beat-to-beat patterns in addition to a considerable amount of 
irregular beat-to-beat patterns. CHF patients lack the regular patterns observed in healthy 
subjects. Instead, they show a predominance of one regular beat-to-beat pattern (alternation of 
acceleration and deceleration) as well as some irregular beat-to-beat patterns similar to the beat-
to-beat patterns observed in the surrogate data. In healthy subjects regular beat-to-beat patterns 
reflect the physiological adaptation to different activities, i.e. sympathetic modulation, whereas 
irregular beat-to-beat-patterns may arise from parasympathetic modulation. CHF patients show 
regular as well as irregular beat-to-beat patterns close to a purely erratic behaviour indicating a 
largely reduced influence of the autonomic nervous system. In conclusion, the analysis of short 
beat-to-beat patterns with respect to regularity leads to a considerably increase of information 
compared to spectral analysis or ApEn of heart rate variations. 
 

Introduction 

On a neural basis dynamic features of the human cardiac activity are modified by two different 
inputs of the autonomic nervous system: sympathetic activity increases heart rate and 
parasympathetic activity lowers heart rate. This seems to be a simple antagonism but in healthy 
subjects these competing branches are influenced by numerous different inputs mediating many 
kinds of stimuli. Hence, the resulting time series of interbeat intervals is highly non-stationary 
and complex (Fig. 1a). The analysis of such time series has revealed a reduced heart rate 
variability (HRV) in patients with cardiac disease such as e.g. congestive heart failure (CHF) 
(6). Likewise, CHF patients show decreased fractal and chaotic features of heartbeat dynamics 
(11, 15, 21).  
 
These findings and their implications with respect to complexity are based on the analysis of the 
heartbeat series containing at least a hundred or more consecutive heartbeats, some methods 
even require 103 or 104 consecutive heartbeats. Here, we investigate dynamic features of 
particularly short beat-to-beat sequences in the order 10 consecutive heartbeats by means of 
symbolic dynamics. At present, two different approaches to derive symbolic dynamics from a 
time series may be distinguished. One approach uses local mean and standard deviation of the 
heart rate time series to create a symbolized time series. E.g. a symbolic sequence may be 
created assigning ‘1’ to a heartbeat if the instantaneous heart rate is near the average heart rate, 
assigning ‘2’ for heart rates considerably below the average heart rate, and assigning ‘3’ if the 
heart rate is considerably above the average heart rate (13, 16-18). The analysis of such 
symbolic sequences has proven useful to improve the detection of cardiac patients at high risk 
(16) or to characterize dynamic differences of slow and fast ventricular tachycardias (17). 
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Recently, a similar approach revealed a loss of complexity in cardiac patients with life-
threatening arrhythmias before the onset of these arrhythmias (13). The analysis of this kind of 
symbolic sequences led to the notion that the heart rate variations are more complex in healthy 
subjects than in e.g. cardiac patients. This notion is compatible with the results from approaches 
that investigate complexity of physiologic time series but do not use symbolic dynamics, such as  
methods derived from chaos theory (7, 11, 15, 21).  
 
The other approach to derive symbolic dynamics symbolizes the increase or decrease of the 
instantaneous heart rate by two different symbols. Hence, the local average heart rate or similar 
quantities of the time series under investigation are not important for the creation of the 
symbolic sequences. It has already been shown that in healthy subjects the average dynamics of 
such short beat-to-beat sequences during night-time sleep is more irregular, i.e. more complex 
and less predictable, compared to heartbeat dynamics during waking time (8). Specific short 
symbolic sequences appear during night-time as a result of the modulation of heartbeat 
variations by respiration (respiratory sinus arrhythmia) and is associated with cardiorespiratory 
synchronization (3, 4). Furthermore, the emergence of certain symbolic sequences on small time 
scales seems to be an individual characteristic feature. For instance, both pathological states, 
CHF and atrial fibrillation show characteristic short dynamic patterns (25).  
 
Recently, a classification of short symbolic sequences based on the acceleration or deceleration 
of heart rate using musical rhythm principles has been developed (2). However, this 
classification did not emphasize dynamic features of such symbolic sequences. Here, we focus 
on dynamic features of such short beat-to-beat series from healthy subjects and patients with 
CHF and their respective surrogate data. We will show that this kind of analysis reveals a 
fundamental difference between short-scale heartbeat dynamics in health and disease. A 
comparison of the results of this analysis with the results obtained from spectral analysis and 
Approximate Entropy of HRV is used to exemplify the augmentation of information made 
possible by the new method.  
 

Methods 

Subjects – Heartbeat time series from thirty healthy subjects (15 female, average age: 29 ± 8 
years) (9) and fifteen patients with severe CHF (NYHA class III-IV; age range 22-71 years; 
‘BIDMC congestive heart failure database’ taken from the Physionet-database; see 
http://www.physionet.org (12)) were analyzed with respect to heartbeat dynamics on small time 
scales. Holter ECGs of the healthy subjects were recorded with Oxford FD3 solid-state memory 
recorders with simultaneous R-peak detection. They were about 24 hours in duration. The 
maximum sampling rate of 1024 Hz provided a temporal resolution of the times of the R-peaks 
of 1 ms. The data were subsequently visually examined with the Oxford Excel software. After 
elimination of artifacts (<0.1% of all R-peaks) the times of the R-peaks and the beat annotations 
were transferred to data files. Data of the CHF group were recorded with Del Mar Avionics 
Model 445 Holter recorder. They were digitized with a sampling rate of 250 Hz permitting a 
temporal resolution of the R-peaks of 4 ms. The recordings were about 20 hours in duration. We 
relied on the information provided in the Physionet database. The data in the database (times of 
the R-peaks and classification of the heartbeats) were taken as provided and were neither 
inspected visually nor corrected manually.  
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Construction of symbolic sequences – The series of interbeat intervals iRR  ( Ni ,,1 K= ) 
between successive R-peaks served as the basis for the calculations.  
A binary sequence iS  ( Ni ,,2 K= ) was created using the differences 1−−=∆ iii RRRRRR  
between successive interbeat intervals (Fig. 1c):  
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Hence, ‘0’ symbolizes a deceleration and ‘1’ an acceleration of the heart rate. Subsequently, the 
probability of the appearance of the 17 pattern sets in the symbolic series iS  was calculated (see 
below).  
 
Approximate Entropy (ApEn) – In this paper, we analyze dynamic properties of binary 
sequences of length 8. For example, the binary sequence 00000000 is obviously more regular 
than e.g. 01100010. I.e., the succession of 0s and 1s is easy to predict in the first sequence 
whereas the prediction of the succession of 0s and 1s in the latter sequence is more difficult. 
Approximate Entropy is an appropriate measure for the quantification of such aspects of binary 
sequences (8, 19). For normal time series ApEn calculates the logarithmic frequency that 
sequences of length m that are close (within a tolerance r) remain close (within the same 
tolerance) in sequences of length m+1 (20). ApEn(m,r) depends on the length m and the 
tolerance r and it assigns higher numbers to more irregular sequences. For binary sequences the 
tolerance r is set to 1<r  because this is the only practical setting for a binary metric. 
Furthermore, to apply ApEn to short binary sequences, the length m is set to 1. For further 
details of the implementation of ApEn for binary sequences see reference (19). As a result, a 
number reflecting the serial irregularity of the succession of 0s and 1s is assigned to each binary 
sequence: the higher ApEn, the more irregular (and less predictive of the succession of the 0s 
and 1s) the binary sequence. Due to redundancies with respect to irregularities of the binary 
sequences, the 25628 =  different sequences are assigned only 17 different values of ApEn. 
Hence, 17 different pattern sets are created by merging the binary sequences with the same 
value of ApEn in one set (for the sequences belonging to each set, see Online Data 
Supplements). These 17 pattern sets reflect different dynamic properties ranging from regular to 
irregular. It has to be noted that the appearance of single ectopic heartbeats or single artifacts is 
not crucial because they only cause an alternation of one symbol resulting in a minor bias in the 
frequency of some binary patterns. If ectopic heartbeats appear frequently they are relevant for 
the assessment of the heartbeat dynamics. Consequently, the contribution of ectopic heartbeats 
to the frequency of several binary patterns is not a disadvantage but reflects a relevant 
characteristics of the dynamics. 
 
In addition to the binary approach, ApEn was also calculated for the normal RR interval series 
of each consecutive segment comprising 1000 RR intervals. The length m was set to 2 and the 
radius r was set to 20% of SDNN.  
 
Heart rate variability – As basic time domain parameters the mean RR-interval and the 
accompanying standard deviation (SDNN) were calculated for each consecutive 5-minute 
epoch. Furthermore, for these epochs, in the frequency domain the low and high frequency 
power (LF: 0.04 – 0.15 Hz, HF: 0.15 – 0.4 Hz) and the ratio LF/HF were calculated using the 
fast Fourier transformation (22). For the CHF patients a filtered RR-tachogram was used to 
reduce the influence of premature ventricular ectopic beats on these parameters (24). 
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Surrogate data – In addition to the original data, one surrogate data set of each recording was 
created by shuffling the interbeat intervals iRR  in random order (23). The resulting series of 
interbeat intervals only shares the distribution of the original interbeat series. All other linear 
and non-linear characteristics, e.g. any temporal correlations, are destroyed (Fig. 1b). 
Subsequently, the analysis of the binary sequences in the surrogate data was carried out in the 
same manner as for the original data. 
 
Statistics – As circadian variations of heart rate and HRV are well known (14), the analysis was 
carried out for the daytime (11:00 to 17:00) and night-time (0:00-6:00) period. Based on the 
binary sequence iS  of each period the probability of each pattern set (i.e. the probability of the 
binary patterns belonging to each pattern set) was calculated. The results of the binary analysis 
are presented as box plots in order to give a detailed picture of the distributions. Appropriate to 
this non-parametric approach, the distributions of patterns of healthy subjects and CHF patients 
were compared using the Wilcoxon rank sum test. Differences between the distributions of 
daytime and night-time were evaluated with Wilcoxon signed rank test. The HRV parameters 
were log-transformed due to their skewed distribution. The transformed HRV parameters and 
the ApEn of the normal RR-intervals are presented as mean ± standard deviation. Differences in 
the distributions of these parameters between healthy subjects and CHF patients were examined 
using Student’s t-test. Furthermore, the differences between daytime and night-time in each 
group were also assessed using the t-test (for dependent samples). A p-value <0.05 was 
considered statistically significant. 
 

Results 

The HRV parameters and ApEn of the RR-tachogram showed the following results. The mean 
RR-interval during daytime was 703 ms for the healthy subjects and 662 ms for the CHF 
patients (see Table 1). During night-time the average RR-interval of the healthy subjects and 
CHF patients increased significantly compared to daytime. Still, the average RR-interval of 
healthy subjects was significantly larger compared to CHF patients. SDNN was significantly 
larger for the healthy subjects but did not show a difference between daytime and night-time. 
For the spectral parameters of HRV ln LF, ln HF and ln LF/HF were significantly larger for the 
healthy subjects compared to the CHF patients. A significant difference between daytime and 
night-time was found for ln HF and ln LF/HF of the healthy subjects HRV and ln LF for the 
CHF patients HRV. During daytime ApEn was significantly lower for the healthy subjects 
compared to the CHF patients (1.01 vs 1.29). During night-time ApEn of the healthy subjects 
increased significantly whereas ApEn of the CHF patients did not change. 
 
The analysis of the binary sequences reveals that during daytime the beat-to-beat heartbeat 
dynamics is clearly different between healthy subjects and CHF patients (Fig. 2a). Sixteen out of 
17 pattern sets show significant differences between the groups (p<0.01 for the pattern sets 1-15, 
p<0.05 for pattern set 17, pattern set 16 n.s.). Surprisingly the heartbeat dynamics in healthy 
subjects shows a substantial amount of very regular dynamic patterns during daytime 
(particularly pattern sets 2-5). At the same time, the binary patterns belonging to these pattern 
sets appear very seldom in CHF patients. In contrast, only one very regular pattern set 
prominently appears in CHF patients (pattern set 1 containing only the patterns 01010101 and 
10101010 – i.e. alternation of acceleration and deceleration of the heart rate). Obviously, also 
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pattern sets 6 and 7 with a medium regularity emerge far more often in CHF patients than in 
healthy subjects. With respect to pattern sets with higher irregularity during daytime, sets 9, 12, 
13 and 17 appear more often in CHF patients whereas pattern sets 8, 10, 11, 14 and 15 appear 
more often in healthy subjects.  
 
During night-time sleep the heartbeat dynamics changes notably in healthy subjects whereas the 
heartbeat dynamics of CHF patients remains very similar compared to daytime (Fig. 2b). A 
number of pattern sets containing the dynamic patterns with higher irregularity (pattern sets 9-
17) were more likely to occur during night-time sleep compared to daytime (p<0.01, pattern sets 
9, 13, 15-17; p<0.05, pattern sets 12, 14). As a consequence, as opposed to the dynamic 
properties during daytime, pattern set 14, 15 and 16 appear more often in healthy subjects 
compared to CHF patients (p<0.01). On the other hand, the likelihood of the pattern sets 2-5, 
containing the more regular patterns, decreased compared to daytime (p<0.01, pattern sets 3-5; 
p<0.05, pattern set 2). Still, the pattern sets 2-5 are more likely to appear in healthy subject than 
in CHF patients (p<0.01) and vice versa for pattern sets 1, 6 and 7 (p<0.01). In the medium 
range of irregularity the pattern sets 8, 10 and 11 are again more likely in healthy subjects 
(p<0.01 pattern sets 10 and 11, p<0.05 pattern set 8) and pattern set 9 is more likely on CHF 
patients (p<0.05). We also carried out the analysis for other lengths of binary sequences (7-12 
successive heartbeats) and found analogous results for daytime and night-time heartbeat 
dynamics.  
 
The probability of the pattern sets for the surrogate data is the very similar for healthy subjects 
and CHF patients (Fig. 2 a and b; hence, only one red asterisk is shown per pattern set). The 
analysis of the surrogate data reveals that the dynamic features observed in beat-to-beat 
variations of CHF patients is close to the dynamic features of random behaviour of the 
heartbeat. Remarkably, the dynamics of the random heartbeat is neither particularly regular nor 
complex. In contrast to healthy heartbeat dynamics, pattern set 1, i.e. a beat-to-beat alternation 
of acceleration and deceleration, is the only pattern set that substantially contributes to regularity 
whereas other regular dynamic patterns (pattern sets 2-5; which include most of the regularity in 
healthy heartbeat dynamics) are rare. Furthermore, the pattern sets 6-17 show a probability 
which is obviously typical for random behaviour. Hence, from a dynamic point of view on small 
time scales, a random heartbeat also shows binary patterns with high irregularity.  
 

Discussion 

The analysis of the irregularity of short beat-to-beat sequences reveals a detailed picture of its 
dynamic features. On short time scales in the order of some seconds the healthy heartbeat is 
especially characterized by a large amount of regular dynamics consisting of a succession of 
beats reflecting heart rate acceleration or deceleration. During daytime such regular dynamics 
are observable approximately half of the time. Physiologically, the continuous adaptation of the 
heartbeat to different activities, i.e. the transitions between behavioural states, leads to 
sequences of acceleration or deceleration lasting several heartbeats. This adaptation is mediated 
by sympathetic activation or withdrawal (e.g. the transition from sitting to standing causes an 
increase of sympathetic activity giving rise to an acceleration of the heartbeat). On larger time 
scales, this continuous adaptation, i.e. the alternation of sympathetic activation and withdrawal, 
leads to a high variability mainly due to low frequency variations which is reflected by a large 
value of ln LF. At the same time a prevailing parasympathetic modulation is rather seldom as 
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indicated by a rather low value of ln HF during daytime. Hence, there is no preference of 
specific binary patterns with higher irregularity. 
 
During night-time the amount of regular patterns in the healthy beat-to-beat dynamics decreases 
and the appearance of more complex heartbeat patterns increases. Such complex patterns mainly 
reflect the ratio between heart rate and respiratory frequency as a result of respiratory sinus 
arrhythmia (e.g. a ratio of 7:2 is indicated by the pattern 00100110 which belongs to pattern set 
17) (4). Hence, the increase of more complex heartbeat patterns is an indicator of an augmented 
parasympathetic modulation which is also reflected by an increased value of ln HF compared to 
daytime. On the other hand, physical activity during sleep such as leg movement is accompanied 
by parasympathetic withdrawal leading to longer sequences of acceleration of the heartbeat, 
followed by sequences of deceleration when the movement stops. Thus, the corresponding 
regular binary patterns still occur to a certain extent even during night-time sleep. Consequently, 
the well-known increase of heart rate variability (especially ln HF) (10) and the well-known 
increase of complexity (as represented by ApEn of a RR-tachogram) (5) of heart rate during 
night-time sleep on larger time scales emerges primarily from irregular but also regular 
heartbeat patterns on small time scales.  
 
The beat-to-beat dynamics of CHF patients hardly show the regular pattern sets observed in 
healthy subjects. Instead, they show a predominance of regular pattern sets which contain 
primarily an alternation of acceleration and deceleration of heart rate (pattern set 1, 6 and 7). 
This alternation reflects the inability of the CHF patients to adapt to different activities. Taking 
into account that the amplitude of such accelerations and decelerations is rather limited, this 
alternation obviously leads to a well-known reduction of heart rate variability which is reflected 
by lower values of ln LF and ln HF compared to healthy subjects (6). However, the 
predominance of regular pattern sets does not imply a significantly decreased complexity on 
larger time scales as during daytime ApEn of the RR-tachogram for CHF patients is not 
different from ApEn for healthy subjects. Hence, very different heartbeat dynamics on small 
time scales may lead to similar ApEn values on larger time scales. Taking into account that 
more irregular pattern sets appear in the heart rate dynamics of healthy people during night-time 
sleep, it seems that the increase of ApEn on longer time scales mainly reflects the increase of the 
appearance of these pattern sets.  
 
The dynamics of the beat-to-beat patterns of CHF patients approaches random heartbeat 
dynamics which is characterized by a specific distribution of the different pattern sets. Apart 
from the predominance of alternation of acceleration and deceleration, this includes binary 
sequences with high irregularity. This erratic behaviour reflects the absence of influence of the 
autonomic nervous system and, hence, may contribute as a factor for high-risk of mortality (1).  
 
We only differentiated between daytime and night-time dynamics of the heart rate. Hence, the 
precise prerequisites of regular or irregular heartbeat dynamics in terms of sympathetic and 
parasympathetic activity or modulation need to be explored more explicitly, e.g. with the help of 
pharmacological agents or under specific physiological conditions. We note that the present 
analysis requires a sampling rate of the electrocardiogram of at least 250 Hz to identify the R-
peaks with a sufficient temporal resolution. A low sampling rate in conjunction with a low heart 
rate variability could lead to a succession of acceleration or deceleration comprising two or three 
heartbeats. Hence, the assignment of the binary patterns to the pattern sets would be erroneous. 
Such symbolic sequences would turn out to be an alternation of acceleration and deceleration if 
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the sampling rate would be sufficiently high. Although symbolic dynamics considerably reduces 
the amount of information contained in the original time series, the symbolization presented in 
this paper is advantageous because it does not require stationarity of the time series as a 
prerequisite for its analysis.  
 
In conclusion, the analysis of different levels of irregularity in short sequences of acceleration or 
deceleration of the instantaneous heart rate extends and refines the notion of complexity of 
human heartbeat dynamics. In healthy subjects the continuous adaptation to different activities 
during daytime, i.e. the sympathetic modulation, leads to regular heartbeat dynamics on small 
time scales. They mainly contain successions of acceleration or deceleration of heart rate. 
During night-time sleep irregular heartbeat dynamics on small time scales emerge caused by 
parasympathetic modulation. Both, regular as well as irregular, contribute to a pronounced heart 
rate variability as found in healthy subjects. In CHF patients the heartbeat dynamics on small 
time scales is close to an erratic behaviour. Regular heartbeat patterns containing an alternation 
of acceleration and deceleration largely contribute to such dynamics, but also heartbeat patterns 
with high irregularity. They reflect the limited influence of the autonomic nervous system on 
heartbeat variations. Taken together, it may be worth looking at the amount and the kind of 
regular beat-to-beat dynamics (pattern sets) to unambiguously distinguish between health and 
disease.  
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Supporting Information listing the binary patterns belonging to each of the 17 pattern sets is 
available online.  

 
 

Figure legends 

Figure 1:  
(A) Non-stationarity of the healthy human interbeat time series. The non-stationarities lead to 
large fluctuations on large time scales as well as on small time scales (see inset). The 
fluctuations on small time scales reveal sequences of acceleration and deceleration of the 
heartbeat often lasting several heartbeats. 
(B) Surrogate data for the same data set. Obviously the temporal structure of the original data is 
completely lost. 
(C) Creation of symbolic sequences. Based on the interbeat intervals the acceleration of the 
heartbeat is symbolized by 1's (negative slope of the line between two successive interbeat 
intervals) and the deceleration of the heartbeat is symbolized by 0's (positive slope of the line 
between two successive interbeat intervals). 
(D) Symbolic sequences for the surrogate data. 
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Figure 2:  
Likelihood of the appearance of the 17 pattern sets in the heartbeat dynamics of healthy subjects 
(white boxes) and CHF patients (grey boxes) during daytime (A) and night-time (B). The 
succession of the pattern sets reflects the increase of irregularity of the binary patterns contained 
in the pattern sets. The red asterisks show the median probability of the 17 pattern sets for the 
surrogate data (the use of Boxplots was not practical as the distributions are very narrow).  
 
 

 


