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Bettermann, H., D. Amponsah, D. Cysarz, and P. Van
Leeuwen. Musical rhythms in heart period dynamics: a
cross-cultural and interdisciplinary approach to cardiac
rhythms. Am. J. Physiol. 277 (Heart Circ. Physiol. 46):
H1762–H1770, 1999.—The purpose of this study was to
expand classic heart period analysis methods by techniques
from ethnomusicology that explicitly take complex musical
rhythm principles into consideration. The methods used are
based on the theory of African music, the theory of symbolic
dynamics, and combinatorial theory. Heart period tacho-
grams from 192 24-h electrocardiograms of 96 healthy sub-
jects were transformed into binary symbol sequences that
were interpretable as elementary rhythmic (percussive) pat-
terns, the time lines in African music. Using a hierarchical
rhythm pattern scheme closely related to the Derler Rhythm
Classification (from jazz theory), we calculated the predomi-
nance and stability of pattern classes. The results show that
during sleep certain classes, specific to individuals, occurred
in a cyclically recurrent manner and many times more often
than expected. Simultaneously, other classes disappeared
more or less completely. Moreover, the most frequent classes
obviously originate from phase-locking processes in auto-
nomic regulation (e.g., between respiratory and cardiac cycles).
In conclusion, the new interdisciplinary method presented
here demonstrates that heart period patterns, in particular
those occurring during night sleep, can be interpreted as
musical rhythms. This method may be of great potential use
in music therapy research.

heart rate variability; symbolic dynamics; African music;
rhythm classification; rhythm patterns; respiratory sinus
arrhythmia; music therapy; cardiorespiratory synchroniza-
tion

FOR MANY YEARS rhythm perception and the ability to
reproduce musical rhythms have been a main topic in
music psychology research (10, 16, 18, 23, 27–29, 34,
36). One question was, How are musical rhythms
represented internally? Even electroencephalogram (25)
or positron emission tomography (40) registrations
have been used to discover structures of perceived
music in the mind.

On the other hand, physiologists are confronted with
a huge variety of complex rhythms in physiological
time series, which have often been compared with
music but only to underline the high-dimensional com-
plexity in physiological time series (4). However, as yet
no investigation has revealed the link between complex

physiological and musical rhythms. Only entrainment
phenomena (15) or the physiological response to audi-
tory stimuli (31, 37) have been reported. The question
remains unanswered: Are complex musical rhythms
represented physiologically?

Apart from various definitions of ‘‘rhythm’’ in differ-
ent disciplines, the term ‘‘musical rhythm’’ has a totally
different significance cross-culturally with respect to its
role in musical compositions. In particular, in many
regions of the less industrialized world, the relation-
ship between rhythms of life and music is much closer
than that in the western world. Ethnological studies
have revealed these relationships in detail (7). A better
understanding of rhythm perception and rhythm cogni-
tion has been an important key to time perception (11)
as well as to the complex inner dynamic of humans. In
nonwestern cultures, time is often more personal than
public (1, 2): time perception is polychronic and closely
linked with the complexity of ‘‘internal clocks.’’ People
are less determined by the need to synchronize with
external clocks, which can result in time uniformity
and monochronicity of time perception. This can be one
reason why musical rhythms, which are the creative
expressions of time, are traditionally more complex in
nonwestern cultures. They are often polymetric,
polyrhythmic, and asymmetric instead of monometric,
monorhythmic, and symmetric like the bar-orientated
European music. For further reading, the reader is
referred to the relevant literature (20, 21, 24).

In this paper, we apply the compositional rhythm
principles of African music to the analysis of cardiac
time series. The fundamentals of these principles,
which have also largely influenced the development of
contemporary rhythm-oriented music in the Americas
(e.g., Latin or jazz music), reach back several thousand
years and are consequently a main issue in ethnomusi-
cological research (20, 21). Unfortunately, in most of
today’s popular music, the huge variety of African
music styles and their compositional principles have
been lost.

Particularly in many African cultures, the relation
between music and the human heartbeat is empha-
sized, and very often music is symbolically called the
heartbeat of Africa. This analogy is not far-fetched,
because African music is like the heartbeat, pulsating
and characterized by cyclically repeated complex
rhythm patterns. (A single ‘‘African music’’ actually
does not exist. We use this term solely to delimit most
common African music styles from the most common
styles in European classical and contemporary music.)
From the point of view of African cultures, music rises
directly from the inner dynamic of human beings,
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which is symbolized and brought forth by the human
heartbeat.1 African music would seem to provide a good
basis for a novel approach to the analysis and better
understanding of cardiac rhythms. We therefore first
focus on some simple basic principles ofAfrican musicol-
ogy (21).

Theory of African music. Rhythm complexity, con-
trast, and cyclicity are the most important principles in
African music compositions. European music theory is
not suited to take these phenomena of African music
into account. Thus new terms and a different notation
were needed to accommodate polyrhythmic African
music. Among others, some of these terms are elemen-
tary pulse, cycle (also pulse amount or cyclic pattern),
pulse number (also form number), and impulse num-
ber, as well as pattern, time line pattern (also time line
or set span; Ref. 3), beat, off-beat phrasing, cross
rhythm, and interlocking. Only some of these terms can
be explained briefly; this explanation is provided with-
out the claim of being exhaustive. Figure 1 illustrates
the definitions used.

The elementary pulse is the basic and smallest, i.e.,
nondivisible time unit of musical rhythm consisting of
actions and nonactions/beats and rests. Rhythm cycles
are multiples of the elementary pulses, usually 8, 12,
16, or 24 pulses (cf. 12-pulse example in Fig. 1). The
number of pulses in one cycle is termed the pulse
number. All beats, accents, or, more generally, impulses
in one cycle fall on the elementary pulses, and their
sum total in one cycle is called the impulse number.
Cycles can consist of one or more patterns, the latter
being indivisible autonomic elements that can be found
on several levels or timescales in music compositions.
In general, patterns are perceived as a whole and are
the rhythm units in African music. In this paper, we
adapt these terms to demonstrate the possible similar-
ity of African musical and physiological temporal struc-
tures.

Symbolic dynamics. With its concept of symbolic
dynamics (14), nonlinear dynamics theory provides a
tool for musical rhythm analysis of cardiac time series.
For this kind of application the heart period tachogram
must be transformed into symbol sequences that can be
interpreted as either musical notes or rhythmic (percus-
sive) patterns. We decided to apply the latter.

The transformation of heart rate or heart period
series into symbolic sequences is not new. Kurths et al.
(22, 39) used this instrument with various transforma-

tion techniques to facilitate heart period analysis. Each
of their symbolization techniques was implemented for
a particular approach. The main difference from our
approach is that they constructed and analyzed the
symbolic sequences solely from the point of view of
complexity analysis (e.g., using renormalized entropy).
Musical rhythmic aspects were not taken into consider-
ation.

Rhythm patterns with pulse numbers from 3 to 8: the
Derler Rhythm Classification. In our approach, the
pattern analysis is restricted to a maximum pulse
number of eight heartbeats. Longer cycles were ignored
because they are largely affected by external modula-
tions and their cyclic character is generally signifi-
cantly disturbed and difficult to recognize.

Table 1 summarizes all binary patterns with pulse
numbers from 3 to 8. For computational use and to
identify patterns that belong to the same pattern class,
it is more practical to use their decimal (code) rather
than binary representation. The rhythm scheme is
closely related to the Derler Rhythm Classification,
which was developed further by Thomas Pfob and
Alfons Dauer and published by Alfons Dauer in 1988
(9). Because we developed the rhythm scheme indepen-
dently, a slightly different notation is used.

The total number of all possible combinations of the
symbols 0 and 1 (musically interpreted, e.g., as rest and
beat), which is 8 1 16 1 32 1 64 1 128 1 256 5 504, can
be reduced to 42 musically relevant pattern classes (5
equivalent classes; Ref. 9).

The first step was to exclude patterns containing only
beats or rests (12 altogether). The remaining patterns
were combined according to the following two redun-
dancy principles. 1) All patterns that are identical after
rotation (5 transposition; Ref. 9) were merged to
pattern classes. The µ(class) is the number of patterns
belonging to one pattern class (5 rhythm amount; Ref.
9), e.g., class(011) 5 class(110) 5 class(101); µ(011) 5 3.
In Table 1, all pattern classes are listed in the order of
the decimal code of their smallest binary representa-
tive (5 basic pattern; Ref. 9). 2) Additionally, comple-
mentary pattern classes resulting from the permuta-
tion of 1 and 0 were merged to one class. In Table 1,

1 ‘‘What is rhythm? It is the architecture of the being, the internal
dynamism which gives him form, the system of waves which he emits
in relation to Others, the pure expression of vital force. Rhythm is the
vibratory shock, the force which, through the senses, seizes us at the
root of our being. It is expressed through the most material and most
sensual means: lines, surfaces, colours and volumes in architecture,
sculpture and painting; accents in poetry and music; but in doing this
it guides all that is concrete towards the light of the mind. With the
African Negro, rhythm enlightens the spirit to the precise extent to
which it is embodied in sensuality. African dancing abhors physical
contact. But watch the dancers. If their lower limbs are shaken with
the most sensual tremors, their heads are sharing in the serene
beauty of the masks, of the Dead’’ (35).

Fig. 1. Three alternative musical notations of the inyimbo rhythm
(1st, 3rd, and 4th rows), which is performed by cyclic repetition of this
asymmetric pattern, consisting of 12 elementary pulses (5 pulse
number) including 5 beats (5 impulse number) plus 7 rests. In this
example, the pulses correspond to 16th notes. The complementary
12-pulse pattern with 7 impulses in 2nd row is called omele and is
also a popular time line pattern in African music.
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complementary classes (also with their smallest binary
representative) are in the same line and have the same
class number except for sign.

Combinatorial theory. The rhythm classification can
be understood as a typical application of combinatorial
analysis that provides a profound mathematical back-
ground for the above elaboration. According to this
theory, the first redundancy principle corresponds to
the definition of a cyclic group Cm of ‘‘shifts in origin,’’
which act on a set Pm of sequences with period m. The
shifts can be compared with the rotation of a necklace
which, in our case, is made from m beads of two
different kinds (12, 13). The second principle can be
interpreted as the definition of a symmetric group S2 of
permutations that here simply means exchanging 1
and 0. The combination of the two principles results in
the symmetry transformation group Cm 3 S2, which
establishes a decomposition of Pm into equivalence
classes or symmetry types of periodic sequences. The

number of elements in a specific class is given by the
sum of the µ values in each row of Table 1. Gilbert and
Riordan (12) derived a formula for the number of
symmetry types with respect to the period m. According
to the data in Table I of their paper and considering the
fact that we ignored patterns consisting only of 1 or 0,
the number of types (equivalence classes) with a period,
e.g., from m 5 3–12, are 1, 3, 3, 7, 9, 19, 29, 55, 93, and
179. In total, these are 398 pattern classes needed to
cover all binary rhythm patterns with pulse numbers
from 3 to 12, and 42 pattern classes for pulse numbers
from 3 to 8.

METHODS

Subjects. The baseline electrocardiograms (ECGs) from the
Cardiodoron study (8) were used as the data resource. The
study included 100 healthy subjects and was carried out at
the Gemeinschaftskrankenhaus, Herdecke, Germany, from
January to August 1997. Because of missing data, four
subjects were excluded from this retrospective analysis. For
the remaining 96 subjects (age 20–41 yr, mean 6 SD 28 6 7
yr; 45 men, 51 women), two successive 24-h ECGs (A and B)
were available. The sleep times could be determined from the
subjects’ diaries.

Construction of symbolic sequences. Oxford FD3 solid-state
recorders with simultaneous R wave detection were used for
the 24-h ECG registration. Visual inspection of the automati-
cally detected R waves was performed on an Oxford Excel
ECG-Analyzer. The R times of all beats were written to a
binary data file that was then exported to a Pentium PC for
further analysis.

The times between successive R waves (R-R intervals) were
calculated in milliseconds, and they form the R-R tachogram.
Herein artifacts and ectopic beats were marked with the
value 9999. Next, the differences of all successive R-R inter-
vals were calculated. These differences formed the differen-
tial R-R tachogram, which was directly transformed into a
binary symbolic sequence as follows (see also Fig. 2). 1) R-R
differences smaller than zero are marked with 1, which
corresponds to an acceleration of the heartbeat. 2) R-R
differences greater than or equal to zero are marked with 0,
which corresponds to a deceleration of the heartbeat. 3)
Missing values or R-R differences that are corrupted by
artifacts or ectopic beats are marked with 9.

Pattern frequency and stability. The computational routine
classtat generally calculates the relative frequency of all 42
pattern classes for any time interval during the day. In the
present application, classtat was applied to all successive 1-h
intervals of the entire 24-h period.

A window with a variable length of m 5 3...8 symbols (pulse
number) is moved in equidistant steps of one heartbeat over

Table 1. Rhythm scheme

Class Code µ Pattern Class Code µ Pattern fG

1 1 3 001 21 3 3 011 1.22
2 1 4 0001 22 7 4 0111 0.88
3 3 4 0011 23 (3) 0 0011 1.12
4 5 2 0101 24 (5) 0 0101 2.12
5 1 5 00001 25 15 5 01111 0.52
6 3 5 00011 26 7 5 00111 0.81
7 5 5 00101 27 11 5 01011 1.86
8 1 6 000001 28 31 6 011111 0.26
9 3 6 000011 29 15 6 001111 0.49

10 5 6 000101 210 23 6 010111 1.28
11 7 6 000111 211 (7) 0 000111 0.56
12 9 3 001001 212 27 3 011011 1.55
13 11 6 001011 213 13 6 001101 1.68
14 21 2 010101 214 (21) 0 010101 3.41
15 1 7 0000001 215 63 7 0111111 0.11
16 3 7 0000011 216 31 7 0011111 0.26
17 5 7 0000101 217 47 7 0101111 0.74
18 7 7 0000111 218 15 7 0001111 0.32
19 9 7 0001001 219 55 7 0110111 1.01
20 11 7 0001011 220 29 7 0011101 1.15
21 13 7 0001101 221 23 7 0010111 1.14
22 19 7 0010011 222 27 7 0011011 1.48
23 21 7 0010101 223 43 7 0101011 2.94
24 1 8 00000001 224 127 8 01111111 0.04
25 3 8 00000011 225 63 8 00111111 0.13
26 5 8 00000101 226 95 8 01011111 0.36
27 7 8 00000111 227 31 8 00011111 0.17
28 9 8 00001001 228 111 8 01101111 0.54
29 11 8 00001011 229 61 8 00111101 0.62
30 13 8 00001101 230 47 8 00101111 0.65
31 15 8 00001111 231 (15) 0 00001111 0.16
32 17 4 00010001 232 119 4 01110111 0.64
33 19 8 00010011 233 59 8 00111011 1.02
34 21 8 00010101 234 87 8 01010111 1.94
35 23 8 00010111 235 29 8 00011101 0.76
36 25 8 00011001 236 55 8 00110111 0.96
37 27 8 00011011 237 39 8 00100111 1.03
38 37 8 00100101 238 91 8 01011011 2.47
39 43 8 00101011 239 53 8 00110101 2.58
40 45 8 00101101 240 (45) 0 00101101 2.53
41 51 4 00110011 241 (51) 0 00110011 1.46
42 85 2 01010101 242 (85) 0 01010101 5.60

µ, No. of patterns in class; fG, normalized relative frequency for an
artificially generated Gaussian-distributed random R-R tachogram.
See text for details.

Fig. 2. Example of construction of a symbolic sequence and determi-
nation of corresponding pattern classes. m, Pulse number.
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the 1-h period, providing five patterns with different pulse
numbers for each heartbeat (see Fig. 2). Every pattern, which
can be assigned to a pattern class from 1 to 42, is counted by
incrementing the corresponding component of a 42-dimen-
sional vector. To make the frequency values of all pattern
classes comparable to each other, for each hour, the absolute
frequencies F(class) are divided by the rhythm amount
µ(class) as well as by the total number of all registered
patterns N(m) with the same pulse number m and are
multiplied by 2m, the number of all possible m-dimensional
binary combinations

f (class) 5
F(class) · 2m

N(m) · µ(class)

The resulting normalized relative frequency f (class) is ,1 if
class is less frequent and .1 if class is more frequent than
would be expected in equally distributed random symbol
sequences.

The classtat routine also calculates the mean step number
s(class) for which the class of the pattern remains unchanged,
when the window is moved stepwise over the entire symbol
sequence; s(class) is termed cyclic pattern stability.

Pattern predominance. To quantify the predominance of
patterns, the difference of the mean of the three greatest f
values and the mean of the three smallest f values is
calculated for each 1-h time interval, giving 24 values/day.
This measure is termed pattern predominance (PP), and it
serves as an information reduction of the entire 24-h ECG.
Here the pattern stability plays no role.

Coupling patterns. Some typical patterns are probably the
result of coupling processes (see Table 2). The patterns can
occur if the phases of the heart period and a heart period
modulating harmonic oscillation are locked. Figure 3 demon-
strates this by way of example for a 7:2 phase locking. These
patterns will likely correspond to respiratory sinus arrhyth-
mia (RSA), the strongest heart period modulation, which
primarily occurs because of interaction in the central nervous
system of the cardiac and respiratory systems. On average,
the number of heart periods per respiratory cycle is approxi-
mately four in untrained healthy adults at rest. This can be
easily shown if one counts all heartbeats and respiratory
cycles during night sleep and calculates the quotient. Conse-
quently, phase locking ratios near 4:1 (e.g., 7:2, 9:2, 3:1, 5:1)
between cardiac and respiratory cycle should be predominant
at rest if phase locking occurs. To test this hypothesis, we paid
particular attention to the pattern classes listed in Table 3.
Here the following pattern classes were further merged:
classes 1 and 12; classes 2 and 42; classes 3 and 41; classes 4,
14, and 42 (see also Table 1).

Musical rhythm patterns. Every possible pattern can also
be seen as a musical rhythm pattern. However, some musical

patterns are more common than others. In general, distinct
asymmetric time line patterns play an important role in
African music. These patterns have an even pulse number m
with m/2 2 k or with m/2 1 k beats (k 5 1, 3...m/2 2 1). The
beats and rests are distributed as equally as possible over the
m pulses. The two asymmetric patterns for each k are
complementary. Dauer and Pfob (see Ref. 9) described the
mathematical construction rule in detail and named the
thus-constructed patterns final rhythms, because they are at
the end of the Derler Rhythm Hierarchy. In our rhythm
scheme, the patterns that belong to the eight-pulse pattern
classes 38 and 238 are the only musically relevant asymmet-
ric patterns. The most common time line patterns in African
music are the 12-pulse pattern with five beats (101010010100)
or its complementary pattern with seven beats (101011010110)
(cf. Fig. 1), which are not in our scheme because of their
length. Beyond that, two further pattern classes are of
interest. Class 10 can be interpreted as a 2 3 3 polyrhythm
(also called 2 against 3 cross rhythm), which is the resultant
of a double meter (class 14) and a triple meter rhythm (class
12). Classes 2 and 32 can be interpreted as the well-known 4/4
meter.

Surrogate data. The question of whether properties that
were found in time series result from nonlinear deterministic
processes can be answered by testing for nonlinearity with
the method of surrogate data. In this paper, two different null
hypotheses are tested with two different sets of surrogate
data. The first, less restrictive null hypothesis is that the
predominance of certain musical rhythm patterns is only
caused by properties of the R-R distribution. This is tested by
shuffling the R-R tachogram of each 10-min interval such that
the distribution of the R-R values is kept but their order
becomes random. The second, more restrictive null hypoth-
esis tests more specifically for nonlinearity, using the im-
proved surrogate data method of Schreiber and Schmitz
described in detail elsewhere (33). The improved R-R surro-
gates have not only the same distribution but also the same
power spectrum as the given R-R tachograms. Thus their

Fig. 3. Illustration of a 7:2 phase locking of heartbeat (vertical bars
mark R time) and a heart period modulating harmonic oscillation
(e.g., respiration); shown are the effect on the heartbeat period and its
symbolic dynamic. The 2 possible binary patterns are complementary
and belong to the same pattern class 22.

Table 2. Patterns that can originate from x:y phase
locking between cardiac cycle x and some modulating
cycle y (e.g., respiratory cycle)

3:1=101 4:1=1001 5:1=11001 6:1=110001
3:2=011 4:2=0101 5:2=10101 6:2=101101
3:3=111 4:3=0011 5:3=01011 6:3=010101
3:4=101 4:4=1111 5:4=00111 6:4=011011
3:5=011 4:5=1001 5:5=11111 6:5=000111
7:1=1110001 8:1=11100001 9:1=111100001 10:1=1111000001
7:2=1001101 8:2=10011001 9:2=110011001 10:2=1100111001
7:3=1010101 8:3=10100101 9:3=101101101 10:3=1001001101
7:4=0101011 8:4=01010101 9:4=101010101 10:4=1010110101
7:5=0110011 8:5=01001011 9:5=010101011 10:5=0101010101

Table 3. Pattern classes and their physiological or
musical interpretation

Class
Physiological

Phase Locking
Musical

Rhythms

4, 14, 42 2:1
1, 12 3:1 3/4 Meter
3, 41 4:1
6 5:1
7 5:2
11 6:1
22 7:2
23 7:3
40 8:3
2, 32 4/4 Meter
38 AS8
10 233 Polyrhythm

AS8, asymmetric 8-pulse pattern.
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linear stochastic properties are approximately identical with
those of the respective original data, but the nonlinearities
are destroyed. Both sets of R-R surrogates were transformed
into binary symbolic sequences and analyzed with the above-
described method.

RESULTS

Examples. Figures 4, 5, and 6 show three typical
examples of the daily course of the pattern frequency
f (class) for all 42 pattern classes (top) and of the
pattern predominance PP (bottom).

Subject 23 reported sleeping from 15:15 to 16:00 and
from 21:30 to 5:32. In Fig. 4, both periods are well
marked by the changes of contrast of f(class). During
the daytime, all patterns are more or less equally
frequent, whereas at rest and during night sleep,
specific patterns are markedly overrepresented. The
pattern predominance increases to PP 5 8.2. The
greatest contrast is revealed by pattern class 41
(00110011). It varies between f 5 0.28 (from 19:00 to
20:00) and f 5 16.3 (from 0:00 to 1:00). The higher f
values of class 41 evidently indicate a 4:1 phase locking
of the respiratory and cardiac cycles during afternoon
and night sleep.

The heartbeat of subject 100 (see Fig. 5) generated
similar 4:1 phase-locking patterns that are highly
overrepresented during night but no more frequent
than all the other patterns during day. This ‘‘rhythmiza-
tion’’ is shown clearly by the double-peaked time course
of PP, with one maximum immediately after the subject
fell asleep and the other one between 4:00 and 5:00 in
the early morning. Simultaneously with the develop-

ment of specific rhythm patterns, other patterns disap-
pear more or less completely. In the case of subject 100,
disappearing patterns with f , 0.1 are patterns of
classes 24, 26, 31, 40, and 42.

Fig. 4. Daily courses of pattern frequency f(class) for all 42 pattern
classes (top) and of pattern predominance (PP, bottom) in electrocar-
diogram (ECG) of subject 23.

Fig. 5. Daily courses of pattern frequency f(class) for all 42 pattern
classes (top) and of PP (bottom) in ECG of subject 100.

Fig. 6. Daily courses of pattern frequency f(class) for all 42 pattern
classes (top) and of PP (bottom) in ECG of subject 97.
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The symbolic sequences of subject 97 reveal a differ-
ent and unexpected rhythmization (Fig. 6). During
nighttime the pattern classes 12, 38, and 40 are the
most frequent, whereas class 41 is relatively infre-
quent. It remains to be investigated whether this
phenomenon really originates from a 8:3 or 3:1 phase
locking. From the music point of view, it would also be
very interesting to explore the possible connection
between the occurrence of class 38 and a possible
preference of subjects for musical rhythms, like the
asymmetric eight-pulse time line pattern, that lie
behind class 38.

All 192 ECGs were analyzed in the same way and
showed similar results. To determine, first, which pat-
terns occurred preferentially during the night and,
second, whether the preference of certain pattern classes
was specific to an individual and reproducible, only the
nighttime sleeping period between 1:00 and 5:00 was
evaluated (the time was corrected according to the
subject’s diary if necessary).

Pattern predominance. With respect to the first ques-
tion, all 1-h intervals during the nighttime with f . 2
and s . 2 were counted. With the latter condition, the
cyclic pattern stability s was explicitly taken under
consideration. Table 4 shows the results. In all, 784 1-h
intervals were analyzed. In five subjects no patterns
were registered that fulfilled the above conditions,
either in ECG A or in ECG B. According to Table 4, the
heart period dynamics of the remaining 91 subjects
most frequently yielded the 4:1 phase-locked pattern
(35%), followed by the 7:2 (19%), 3:1 (17%), 5:1 (15%),
6:1 (12%), and 8:3 (5%) patterns. Also, the 4/4 measure
pattern, which cannot be explained directly as a result
of a phase-locking process, was overrepresented in 41
1-h intervals. Over all subjects, all other patterns were
generated less often, but some played an important role
in individuals.

Reproducibility. With respect to the question of intra-
individual reproducibility, the number of 1-h intervals
with an overrepresentation (f . 2 and s . 2) of certain
pattern classes was calculated separately for each
individual and both recording days. In this way, we
arrived at 91 pairs of numbers for each pattern class
which are plotted in Fig. 7 for day A versus day B. The
correlation coefficient r is given, which serves as a
measure for the reproducibility of the specific pattern
from day A to day B within individuals. The patterns
that are related to 3:1, 5:1, 6:1, and 8:3 phase locking
are highly reproducible, with r . 0.8. For the most
frequently occurring phase-locking patterns (4:1 and
7:2), the values are slightly lower.

Surrogate data. Visual comparison of the pattern
frequencies in original and surrogate data provided
evidence that the predominance of physiological rhythm

patterns was lost in shuffled data. As can be seen in Fig.
8, shuffling of R-R tachograms caused predominance of
patterns of alternating 0 and 1. This effect is numeri-
cally demonstrated in the last column of Table 1, which
displays the corresponding f values for an artificially
generated Gaussian-distributed random R-R tacho-
gram. Those patterns with long sequences of only 0 or 1
are per se less frequent than those with alternating 0
and 1. For example, class 42 with its strong 01 rhythmic-
ity (f 5 5.6) is the most frequent, whereas the pattern
consisting of seven 0s or 1s appears most infrequently
(f 5 0.4). The value for PP of the random data is 3.94.
These findings are the result of a numerical simulation.
We have not yet found a mathematical theory that
enables an analytic calculation of f values when the
distribution of values in random time series is given.
However, with this numerical experiment it could
sufficiently be demonstrated why and to what extent
the symbolic patterns of shuffled R-R tachograms are
not equally frequent.

Examining the results for the improved surrogate
data, we found that the pattern frequencies could not
be distinguished from those of the original data. This
suggests that the pattern frequencies result primarily
from the linear properties of the R-R tachogram.

DISCUSSION

In this paper we introduce a cross-cultural and
interdisciplinary approach to cardiac rhythms. It is
based both on some principles of symbolic dynamics
and on theoretical aspects of African music under
explicit consideration of the cyclicity of rhythm pat-
terns. The rhythm classification, based on combinato-
rial theory, is not new. It has been previously applied
successfully in musicology to disclose important prin-
ciples, in particular, of African music compositions.
Here we have used the same approach in heart period
analysis.

It is widely accepted as common knowledge that
musical rhythms are closely related to the human sense
of the present (11). The time span of the present is
framed by the two elementary and most dominant
rhythms of life, respiration and heartbeat (17). Indeed,
in many cultures of the world it is a matter of course
that musical rhythms are an expression of heartbeat
and respiration. The aim of this study was to find
quantitative links between music and physiology that
support this assumed relationship. Such links would
give deeper insights not only into human physiology
but also into the phenomenology of music itself. In this
respect, the method presented in this study should not
only be seen as an additional subtle method for the
analysis of heart rate variability but also as a tool for

Table 4. Number of 1-h intervals during nighttime with f . 2 and s . 2 for original and shuffled surrogate data

2:1 3:1 4:1 5:1 5:2 6:1 7:2 7:3 8:3 4/4 AS8 Other Total Analyzed

Originals 8 130 275 121 14 96 145 2 37 41 9 138 784
Surrogates 179 0 0 0 0 0 0 0 0 0 0 0 784

Rhythms are classified according to physiological phase-locking and musical rhythm interpretations in Table 3.
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the systematic examination of the phenomena of heart-
beat dynamics from the humanities, i.e., the musicologi-
cal and ethnological point of view.

The basic rhythmic element of African music is the
pattern of one rhythm cycle, which serves as a time line
much like the bar in European music. This time line
pattern dominates a musical composition by its strict
cyclic repetition from the beginning to the end of the

piece. Beside the elementary pulsation, the time line
pattern is a very important musical reference element
that serves as a coordinator of African music ensembles
like the baton of a philharmonic conductor. We applied
the pattern concept of African music by structuring all
possible time line patterns with three to eight pulses,
avoiding redundancy. This resulted in a musical rhythm
scheme with 42 pattern classes that is strongly related
to the Derler Rhythm Classification and is based on
combinatorial mathematics.

We then constructed binary symbolic patterns from
the differential 24-h R-R tachogram of healthy subjects
on the basis of symbolic dynamics. Together with the
African music pattern concept, this allowed a musical
interpretation of heart period dynamics. The algorithm
presented showed that, in some individuals during
sleep, certain rhythm patterns occurred many times
more often than expected. Simultaneously, other pat-
terns disappeared more or less completely. Moreover,
the musical rhythm analysis provided a tool to detect
patterns that apparently originate from phase-locking
processes in autonomic regulation and further allowed
statements about the corresponding phase-locking ra-
tios. For example, if RSA is present, strict phase locking
between respiratory and cardiac cycles results in cycli-
cally repeated binary patterns of the differential sym-
bolic heart period dynamic. In healthy subjects, 4:1
phase-locking patterns were found most frequently,
followed by patterns that may result from 7:2, 3:1, and
5:1 phase locking, likely between respiratory and car-
diac cycle; 9:2 phase-locking ratios were not detectable
because of the implemented maximum cycle length of
eight heartbeats in our algorithm. All phase-locking
patterns were specific to individuals and highly repro-
ducible.

The musical rhythmization of the heartbeat can be
observed primarily during resting periods. Moreover, in
most cases the predominance of musical rhythms
changed at least two times abruptly during night sleep,
which suggests that the quality of sleep largely influ-
ences the cardiac rhythmicity. On the other hand, we
were very surprised that the previously observed in-
crease of heart period complexity during sleep (6, 38) is
obviously accompanied by a contradictory augmenta-
tion of rhythmic processes. Indeed, in certain 1-h data
sets we observed that both the approximate entropy, as
a measure for complexity, as well as the rhythm pattern
predominance were notably increased. Further experi-
ments, e.g., with model data, may help explain this
phenomenon. In particular, it would be interesting to
compare regularity statistics of symbolic sequences
with the predominance and the cyclic recurrence of
rhythm patterns. In this respect, we suggest taking up
the ideas of Pincus and Singer (26), who have proposed
a method to quantify randomness and degrees of irregu-
larity, among other things, of short binary sequences of
clinical data [alternatively, see also Raab and Ebner
(29)].

In our data, the generation of surrogate R-R tacho-
grams showed, first, that the detected pattern predomi-
nance is an intrinsic physiological property and, sec-

Fig. 7. Number of 1-h nighttime intervals with f . 2 and s . 2 for
ECG A vs. ECG B. For each pattern class there are 91 number pairs, 1
for each subject; correlation coefficient r serves as measure for
reproducibility of specific pattern from day A to day B within
individuals.

Fig. 8. Daily courses of pattern frequency f(class) for all 42 pattern
classes (top) and PP (bottom) for shuffled surrogates of data for ECG
of subject 23 shown in Fig. 4.
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ond, that this property is probably caused by
autocorrelations and not by deterministic nonlineari-
ties. As a result, physiological pattern predominance
must be inherent in the power spectra of R-R time
series. However, as the spectra do not reveal this
‘‘musicality’’ of the heartbeat, musical rhythms remain
hidden when only the spectral characteristics of heart
rate variability are analyzed.

In the past, cardiac respiratory coupling has been a
main topic of many technically and/or mathematically
elaborated investigations (19, 30, 32), which were all
based on the simultaneous registration of heart period
and respiration to exhibit the couplings of the cardiac
respiratory control loop. In this study it could be shown
that the unsophisticated ‘‘musical’’ rhythm analysis of
the differential symbolic R-R series may represent a
more easily applicable tool to detect and to analyze
phase-locking ratios between cardiac and respiratory
cycles. Because this tool provides no certainty that the
detected cyclic rhythm patterns really originate from a
phase locking of cardiac and respiratory cycles, further
studies are needed to confirm this presumed relation-
ship.

In some sense, the musical heart rhythm analysis is a
simplification of the electrocardiographic respiratory
rate detection method we introduced in an earlier
publication (5): after the R-R tachogram was band-pass
filtered in the respiratory band, the proposed method
was based also on the evaluation of the differential
heart period dynamic. However, it disregarded the
power of the dynamic’s cyclic behavior and the steady
recurrence of identical symbolic rhythm patterns that,
from the music point of view, are the most important
characteristics of rhythms in music and life.

In the future, the search for fundamental links
between musical and physiological rhythms can give
rise to truly interdisciplinary research. This may pro-
vide wider aspects for rhythm and time perception and
can also yield a better understanding of time structures
in human life. A possible strategy could be, first, to
make physiological rhythms audible via suitable sym-
bolic data transformations into audio computer files
and second, to analyze the psychophysiological re-
sponse to the perception of such personal physiological
rhythms. These experiments should include percussion
(at least finger tapping) or dance to reproduce the
rhythms and should pursue the question whether
distinct physiological rhythms can be specifically ampli-
fied. This positive physioacoustic feedback or rhythmic
resonance may be of great potential use, in particular,
for the evaluation of music therapies.
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32. Schäfer, C., M. G. Rosenblum, J. Kurths, and H. H. Abel.
Heartbeat synchronized with ventilation. Nature 392: 239–240,
1998.

33. Schreiber, T., and A. Schmitz. Improved surrogate data for
nonlinearity tests. Phys. Rev. Lett. 77: 635–638, 1996.

34. Schulze, H. H. Categorical perception of rhythmic patterns.
Second Workshop on Rhythm Perception and Production, Mar-
burg, September 29-October 2, 1987. Psychol. Res. 51: 10–15,
1989.

35. Senghor, L. S. L’esprit de la civilisation ou les lois de la culture
Négro-Africaine. Présence Africaine 8/10: 51–64, 1956.

36. Summers, J. J., R. Bell, and B. D. Burns. Perceptual and
motor factors in the imitation of simple temporal patterns.
Second Workshop on Rhythm Perception and Production. Mar-
burg, September 29-October 2, 1987. Psychol. Res. 51: 23–27,
1989.

37. Van der Molen, M. W., R. J. Somsen, and J. R. Jennings.
Does the heart know what the ears hear? A heart rate analysis of
auditory selective attention. Psychophysiology 33: 547–554, 1996.

38. Van Leeuwen, P., H. Bettermann, U. an der Heiden, and
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